Rexnord Modulflex
Torsionally Stiff Disc Couplings
Why Choose Rexnord Modulflex Disc Couplings?

Why Choose Rexnord?
When it comes to providing highly engineered products that improve productivity and efficiency for industrial applications worldwide, Rexnord is the most reliable in the industry. Our commitment to customer satisfaction and superior value extends to every area of our business.

Delivering Lowest Total Cost of Ownership
The highest quality products are designed to help prevent equipment downtime, increase productivity and deliver dependable operation.

Valuable Expertise
An extensive product offering is accompanied by global sales specialists, customer service and maintenance support teams, available anytime.

Solutions to Enhance Ease of Doing Business
Our commitment to operational excellence means you benefit from getting the right products to the right place at the right time.

Patent-pending Design
Rexnord® has applied for a patent for this new innovative design. The simplified disc and bolt connection with its slotted bush is a ground-breaking development, and helps bring greater efficiency and improved productivity to customers.

Reliable Performance
Rexnord Modulflex® Coupling Disc Packs are installed under compression which allows reciprocating loads. The simplified disc pack connection and improved precision in disc and hardware connection increases the dynamic safety inside the disc joint.

Meet Several Application Requirements
The coupling design allows additional components like extended spacers, special adapters and composite material spacers to be added to meet application needs. Rexnord Modulflex Disc Couplings comply with the rules of approval societies such as DNV, Lloyd’s Register and American Bureau of Shipping (ABS) and are ATEX (II2G / II2D and M2 T6) compliant when specified.

Low Equipment Lifetime Cost
Rexnord Modulflex Disc Couplings require no lubrication and the disc pack modules allow visible inspection and are designed for infinite dynamic load life. These couplings are easy to install, and, when required, the modules are simple to replace-in-place.
Rexnord Modulflex 92x5 Disc Couplings — Modular design for your application

With decades of experience in the coupling business, the Rexnord Modulflex Disc Coupling design offers a variety of solutions for the most challenging applications. You will find our couplings in marine drive shafts, compressors, large industrial fans, and more, in the automotive, marine, metal, and energy industries.

Torsionally stiff couplings for your application

- **Reliable performance** — Rexnord Modulflex 92x5 Coupling Disc Packs are installed under compression, allowing reciprocating loads. The simplified disc pack connection and improved precision in disc and hardware connection increases the dynamic safety inside the disc joint.
- **Meets several application requirements** — The coupling design allows additional components like extended spacers, special adapters and composite material spacers to be added to meet application needs. Rexnord Modulflex 92x5 Disc Couplings comply with the rules of approval societies such as DNV GL Business Assurance, Lloyd’s Register (LR) and American Bureau of Shipping (ABS) for marine applications.
- **Low equipment lifetime cost** — Rexnord Modulflex 92x5 Disc Couplings require no lubrication and the disc pack modules, allowing visual inspections, are designed for infinite dynamic load life. These couplings are easy to install, and when required, the modules are simple to replace-in-place.

Features and benefits

- Disc packs are built under compression allowing reciprocating torques at high speeds
- High-precision manufacturing methods eliminate backlash and joint vibration
- Modular design allows customized couplings that are easy to install
- High-strength stainless steel disc packs, designed for infinite dynamic load life even with reciprocating forces
- Flexible disc design offers angular, radial and axial misalignment capability
- Are EN 10204-3.2 and ATEX II 2GD c T6 compliant when specified

For replace-in-place and adapted to existing connecting equipment applications

Type 9205-XX-0000

- Single flexible element design
- Factory assembled disc pack
- Base for spacer and long spacer coupling configurations
- Element can be used with finished bore or Rexnord Koniclamp® hub configurations
- Special materials available (Aluminum 9805-XX-0000*)

Type 9205-XX-0500

- Double flexible element design
- Factory assembled disc pack
- Base element for short distance between shaft end connections
- Element can be used with finished bore or Rexnord Koniclamp hub configurations
- Special materials available (Aluminum 9805-XX-0500*)

“XX” represents the coupling size. When placing an order, please replace the “XX” with your specified coupling size.
For applications where the overall shaft-to-shaft spacing is minimal

Type 9215-XX-3500*
- Double flexible element design with finished bore hubs
- Short distance between shaft end connections
- Hubs can be machined for bore and key, or hydraulic bore shaft connections (Type 9215-XX-3500*)
- Rexnord Koniclamp keyless shaft connection (Type 9215-XX-4500*)
- Application examples: test bench, roller tables

Type 9215-XX-4500*

For applications with intermediate spacer

Type 9235-XX-3000*
- Spacer coupling design with finished bore hubs (Type 9235-XX-3000*)
- Spacer coupling design with Rexnord Koniclamp hubs (Type 9235-XX-4000*)
- Industry standard spacer lengths to meet ISO and ANSI requirements
- Non standard spacer lengths up to 500 millimeters
- Hubs can be machined for bore and key, or hydraulic bore shaft connections (Type 9235-XX-3000*)
- Rexnord Koniclamp keyless shaft connection (Type 9235-XX-4000*)
- Application examples: slurry pumps, large industrial fans

Type 9235-XX-4000*

For applications with extended spacer

Type 9255-XX-3000*
- Welded spacer coupling design with finished bore hubs (Type 9255-XX-3000*)
- Welded spacer coupling design with Rexnord Koniclamp hubs (Type 9255-XX-4000*)
- Spacer lengths up to 6 meters
- Hubs can be machined for bore and key, or hydraulic bore shaft connections (Type 9255-XX-3000*)
- Rexnord Koniclamp keyless shaft connection (Type 9255-XX-4000*)
- Application examples: marine main drives, large vertical pumps

Type 9255-XX-4000*

For applications requiring adaptation to flywheel or brake discs, and more

Type 9275-XX-3000*
- Spacer coupling design with flywheel adapter and finished bore hub (Type 9275-XX-3000*)
- Spacer coupling design with flywheel adapter and Rexnord Koniclamp hub (Type 9275-XX-4000*)
- Torsionally tuned spacer coupling design with flywheel adapter and Rexnord Koniclamp hub (Type 9275-XX-4000 TT*)
- Industry standard spacer lengths to meet ISO and ANSI requirements
- Non standard spacer lengths up to 500 millimeters
- Flywheel adapter plate which bolts directly to the flywheel of an engine or compressor
- Hubs can be machined for bore and key, or hydraulic bore shaft connections (Type 9275-XX-3000*)
- Rexnord Koniclamp keyless shaft connection (Type 9275-XX-4000*)
- Application examples: reciprocating compressors, engine drives

Type 9275-XX-4000*
Rexnord Modulflex Torsionally Stiff, Flexible Disc Couplings are all-metal couplings complying with standard 740. The couplings consist of two disc packs, two flanges or hubs and one spacer. The flexible disc pack is the basis of all types and is alternately bolted to the flange or hub. The disc pack consists of a number of thin discs made of stainless steel. Torsionally stiff and flexible couplings compensate for axial, angular and - when equipped with two disc packs - also for radial misalignment.

Couplings provide nearly unlimited lifetime provided proper selection, installation and operation. Restoring forces and loads on the bearings are negligible, except extreme short distance versions. These couplings can be operated even at high environmental temperatures.
Rexnord Koniclamp® Clamping Hubs with integrated releasing technology provide frictional shaft connection. Moreover, hubs are secured against axial movement on the shaft. Clamping bolts also serve as releasing bolts. Additional fastening elements or special tools are not necessary. Clamping hubs are supplied as steel or aluminum versions.

Mounting
The clamping bolts are tightened up with a torque spanner one after the other (not crosswise) in stages to increasing levels of torque, starting with approximately 1/5th of the nominal torque and then in 1/5th increasing steps whereby several rotations will be necessary for each step. The tightening process has been completed when all the screws have been tightened to the nominal torque stated in the drawing.

Dismounting
Thanks to the smart design of the Rexnord Koniclamp Clamping Hub, the clamping bolts also serve as push-off screws. The initial slackening is carried out with the torque necessary for this. All the screws are screwed back until resistance is felt. Then the screws are loaded - one after the other - with an increasing torque up to the point at which the clamping ring is released.
Rexnord Modulflex Disc Coupling Misalignment Capabilities

Below illustrations show the principle design of double-flex couplings and their characteristics for shaft misalignment. In general, the three depicted types of misalignment occur simultaneously during operation. They superimpose to a total misalignment which has to be compensated for by the coupling. Whereas a single-flex element only compensates for angular and axial misalignment, radial misalignment capacity of double-flex couplings is a result of the ratio of admissible angular misalignment and distance between the two disc packs (=a) according to this formula:

$$\text{admissible radial misalignment} = a \times \text{tangent admissible angular misalignment}$$

$$a = S_2 - K$$

$$a = S_5 - K$$

The radial misalignment capacity of couplings with variable spacer length depends on the length of the spacer or intermediate shaft.

Values ΔK and ΔK_w as indicated in the respective data sheets apply at $\Delta K_a = 0$. If ΔK_a takes a value $\neq 0$, values ΔK_w are reduced acc. to graph 1. Values ΔK_w at $\Delta K_a \neq 0$ acc. to graph 1 are then used in the formula determining ΔK_r.

Example: At axial misalignment, the admissible angular misalignment ΔK_w is reduced to a percental smaller value.

Note: dynamic balancing required for high speeds.
Questionnaire for the selection of flexible shaft couplings in accordance with DIN 740

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak period</td>
<td>Duration of non-periodic torque peaks in the drive, e.g. starting up time, brake time, etc.</td>
<td>s</td>
</tr>
<tr>
<td>Nominal torque drive side</td>
<td>Nominal torque of driving machine calculated from nominal power and nominal speed</td>
<td>Nm</td>
</tr>
<tr>
<td>Nominal torque driven side</td>
<td>Maximum load torque calculated from power and speed</td>
<td>Nm</td>
</tr>
<tr>
<td>Torque peak drive side</td>
<td>Value of non-periodic torque peak on driving side, e.g. occurring in starting up and change in speed. For electric motors the equation M=T may be applied (pull out torque)</td>
<td>Nm</td>
</tr>
<tr>
<td>Torque peak driven side</td>
<td>Value of non-periodic torque peak on load side, e.g. load variations and braking</td>
<td>Nm</td>
</tr>
<tr>
<td>Periodic torque peak drive side</td>
<td>Value of periodic torque initiation of i-order arising from drive side</td>
<td>Nm</td>
</tr>
<tr>
<td>Periodic torque peak driven side</td>
<td>Value of periodic torque initiation of i-order arising from load side</td>
<td>Nm</td>
</tr>
<tr>
<td>Moment of load during acceleration</td>
<td>Torque which appears during acceleration</td>
<td>Nm</td>
</tr>
<tr>
<td>Moment of inertia drive side</td>
<td>Total of inertia moments on driving side acting on coupling shaft, except coupling</td>
<td>kgm²</td>
</tr>
<tr>
<td>Moment of inertia driven side</td>
<td>Total of inertia moments on driven side acting on coupling shaft, except coupling</td>
<td>kgm²</td>
</tr>
<tr>
<td>Speed (rpm)</td>
<td>Speed of coupling shaft</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>Pulses per rotation</td>
<td>Number of oscillations (surges of torque) per revolution</td>
<td>l</td>
</tr>
<tr>
<td>Starting frequency</td>
<td>Numbers of starts (accelerations) per hour. On start-up with braking or on reversing Z should be doubled.</td>
<td>h⁻¹</td>
</tr>
<tr>
<td>Temperature</td>
<td>Highest ambient temperature of coupling during operation.</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum axial misalignment</td>
<td>Maximum axial misalignment occurring between connecting shafts</td>
<td>mm</td>
</tr>
<tr>
<td>Maximum radial misalignment</td>
<td>Maximum radial misalignment occurring between connecting shafts</td>
<td>mm</td>
</tr>
<tr>
<td>Maximum angular misalignment</td>
<td>Maximum angular (cardanic) misalignment occurring between connecting shafts</td>
<td>rad</td>
</tr>
</tbody>
</table>
The standard selection method can be used for most motor, turbine or engine-driven applications. The following information is required to select a flexible coupling:

- Horsepower or Kilowatts or torque
- Running rpm
- Application or type of equipment to be connected (motor to pump, gear drive to conveyor, etc.)
- Shaft diameters
- Distance between shaft ends
- Physical space limitations
- Special bore or finish information and type of fit
- Torsional rigidity, weight and inertia

Consider application peak loads and brake and reversing torques. If loads are higher than application nominal torque use values to select the appropriate coupling size.

1. **Rating:** Determine the system torque. If the torque is not given, calculate as shown below:

 \[
 \text{System Torque (Nm)} = \frac{\text{kW} \times 9550}{\text{Rpm}} \quad \text{System Torque (Nm)} = \frac{\text{PS} \times 9550 \times 0.746}{\text{Rpm}}
 \]

 Power (kW) is the actual or transmitted power required by the application (if unknown, use the motor or turbine nameplate rating). Rpm is the actual speed at which the coupling is rotating. Applications that require rapid direction changes or torque reversals should be taken into consideration when selecting the coupling size.

 Oscillations bandwidth torque values should be used in the coupling selection, considering that the coupling minimum positive or negative torque ratings are not exceeded.

2. **Required Minimum Coupling Rating:** Determine the required minimum coupling rating as shown below:

 Coupling nominal rating > application nominal torque (Nm), peak or reversing torque as shown in the below table.

3. **Size:** Refer to the torque rating table below and select the coupling size that can transmit the required torque.

4. **Type:** Refer to the overview on pages 4 and 5 for the coupling type and trace down the torque column to a value that is equal or greater than what you determined in step 3 above.

5. **Check:** Check speed (rpm), bore capacity, distance between shaft ends and the main dimensions to ensure the coupling fits in the available space.

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque (Nm)</th>
<th>Nominal Torque (Nm)</th>
<th>Maximum Torque (Nm)</th>
<th>Maximum Torque (Nm)</th>
<th>Perm. Oscill. Bandwidth (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330</td>
<td>-330</td>
<td>500</td>
<td>-500</td>
<td>660</td>
</tr>
<tr>
<td>4,5</td>
<td>540</td>
<td>-540</td>
<td>800</td>
<td>-800</td>
<td>1080</td>
</tr>
<tr>
<td>6,4</td>
<td>760</td>
<td>-760</td>
<td>1250</td>
<td>-1250</td>
<td>1520</td>
</tr>
<tr>
<td>11</td>
<td>1300</td>
<td>-1300</td>
<td>2000</td>
<td>-2000</td>
<td>2600</td>
</tr>
<tr>
<td>17</td>
<td>2000</td>
<td>-2000</td>
<td>3000</td>
<td>-3000</td>
<td>4080</td>
</tr>
<tr>
<td>28</td>
<td>3300</td>
<td>-3300</td>
<td>5000</td>
<td>-5000</td>
<td>7400</td>
</tr>
<tr>
<td>45</td>
<td>5400</td>
<td>-5400</td>
<td>8000</td>
<td>-8000</td>
<td>10800</td>
</tr>
<tr>
<td>64</td>
<td>7600</td>
<td>-7600</td>
<td>12500</td>
<td>-12500</td>
<td>15300</td>
</tr>
<tr>
<td>110</td>
<td>13200</td>
<td>-13200</td>
<td>20000</td>
<td>-20000</td>
<td>26400</td>
</tr>
<tr>
<td>170</td>
<td>20400</td>
<td>-20400</td>
<td>30000</td>
<td>-30000</td>
<td>40800</td>
</tr>
<tr>
<td>280</td>
<td>33600</td>
<td>-33600</td>
<td>50000</td>
<td>-50000</td>
<td>74000</td>
</tr>
<tr>
<td>450</td>
<td>54000</td>
<td>-54000</td>
<td>80000</td>
<td>-80000</td>
<td>108000</td>
</tr>
<tr>
<td>640</td>
<td>76800</td>
<td>-76800</td>
<td>125000</td>
<td>-125000</td>
<td>153000</td>
</tr>
<tr>
<td>1100</td>
<td>132000</td>
<td>-132000</td>
<td>200000</td>
<td>-200000</td>
<td>264000</td>
</tr>
<tr>
<td>1700</td>
<td>204000</td>
<td>-204000</td>
<td>300000</td>
<td>-300000</td>
<td>408000</td>
</tr>
<tr>
<td>2800</td>
<td>336000</td>
<td>-336000</td>
<td>500000</td>
<td>-500000</td>
<td>740000</td>
</tr>
</tbody>
</table>

- According to DIN 740:2.1966-08
- According to DIN 50100:1978-02
- Referring to one flexible module
- This value is for testing purpose only

Description

- **Upper limit positive (Nominal torque):** (+)TKN
- **Upper limit negative (Reversing torque):** (-)TKN
- **Permissible oscillation bandwidth:** TKW
- **Peak torque positive (Startup torque):** (+)TEmax
- **Peak torque negative (Breaking torque):** (-)TEmax

Code

- (+)TKN
- (-)TKN
- TKW
- (+)TEmax
- (-)TEmax

Explanation

- Torque which can be transmitted continuously over the entire speed range of the coupling.
- Negative torque which can be transmitted continuously.
- Torque amplitude of the permissible periodic torque fluctuation with a frequency of 10Hz and basic load of TKN or dynamic load up to TKN. This value is for testing purpose only.
- Torque which can be transmitted during the entire life of the coupling => 10^5 times as peak load or 5 x 10 x 10^4 times as alternating load.
- Torque which can be transmitted during the entire life of the coupling => 10^5 times as peak load or 5 x 10 x 10^4 times as alternating load.
Selection Examples

Selection example for motor driven applications:
Select a coupling to connect a 55 kW, 1500 rpm electric motor driving a lobe-type blower. Motor shaft diameter is 42 mm, blower shaft diameter is 38 mm. Distance between shaft ends is 140 mm. Shaft extensions are 140 mm and 110 mm.

1. Determine required rating: System torque (Nm) = 55 kW x 9550 / 1500n-min = 350 Nm
2. Required minimum coupling rating: 350 Nm
3. Size: Select the coupling size from the table on page 10 with the system torque calculated in step 1. Modulflex Size 4,5 is the proper coupling size based on a torque rating of 540 Nm, exceeding the required minimum coupling rating of 350 Nm.
4. Type: Select the suitable Rexnord Modulflex Disc Coupling type from the overview on page 4 and 5, which meets the application requirements. In this case the shaft to hub connection has a key way connection, which means that type 9235 is required.
5. Check: Allowable speed capacity of 9235-4,5-3000 exceeds the required speed of 1500 rpm. Maximum bore capacity of 44 mm exceeds the actual shaft diameters. Minimum C-dimension is less than 140mm.

Note: On high inertia applications, please contact Rexnord technical support to ensure proper coupling selection.

Selected coupling: Rexnord Modulflex 9235-4,5-3000 c=140mm D1/D2=42H7+38H7+KEY WAY (JS9) + SET SCREW (M8)

Selection example for engine driven applications:
Select a coupling to connect a 450hp at 1500 rpm nominal power engine driven reciprocating compressor. Engine shaft diameter is 110 mm, compressor shaft diameter is 115 mm. distance between shaft ends is 250mm. Shaft extensions are 140 mm and 130 mm.

1. Determine required rating:
 • Engine nominal torque (Nm) = 450 x 0.746 x 9550 / 1500n-min = 2137 Nm.
 • Alternating torque (Nm) based on engine torque curves provided by engine manufacturer 1630 Nm to 2360 Nm
1.1 Determine required rating: Based on compressor manufacturer given torque curves torque variates from +860 Nm to -420 Nm
2. Required minimum coupling rating: Engine nominal torque 2137 Nm. Driven (compressor) created torque.
3. Size: From Table 1, Rexnord Modulflex Disc Coupling size 45 is the appropriate coupling size based on a torque rating of 54000 Nm exceeding the required minimum coupling rating of 3300 Nm.
4. Type: Select the suitable Rexnord Modulflex Disc Coupling type from the overview on page 4 and 5, which meets the application requirements. In this case the shaft to hub connection has a keyway connection, type 9235 is required.
5. Check: Allowable speed capacity of 9235-45-4000 exceeds the required speed of 1500 rpm. Maximum bore capacity of 120 mm exceeds the actual shaft diameters. Minimum C-dimension is less than 250mm.

Selected coupling: Rexnord Modulflex 9235-45-4000 c=250mm D1/D2=110/115
Single-flexing Coupling Element

Modulflex 9205-XX-0000

Single flexible element as basis for spacer and long spacer coupling configurations. For replace-in-place and adapting to existing connecting equipment. The element can be used with finished bore or Rexnord Koniclamp® hub configurations.

Features
- Disc pack is built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction
Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface
9205-XX-0000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Nominal Torque ➀</th>
<th>Nominal Torque ➀</th>
<th>Maximum Torque ➀</th>
<th>Maximum Torque ➀</th>
<th>Perm. Oscill. Bandwidth ➁</th>
<th>Axial Misalignment</th>
<th>Radial Misalignment</th>
<th>Angular Misalignment</th>
<th>Torsional Spring Rate</th>
<th>Moment of Inertia</th>
<th>Weight</th>
<th>Maximum Speed</th>
<th>Dimensions</th>
<th>Bolt Hole Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>0.11</td>
<td>0.0006</td>
<td>660</td>
<td>0.1</td>
<td>75,95</td>
<td>44,000</td>
<td>75</td>
<td>47,7</td>
<td>13,25</td>
<td>12,95</td>
<td>A</td>
</tr>
<tr>
<td>4,5</td>
<td>540 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>0.16</td>
<td>0.0013</td>
<td>800</td>
<td>0.1</td>
<td>88,6</td>
<td>39,000</td>
<td>110</td>
<td>97,9</td>
<td>32,5</td>
<td>31,95</td>
<td>B</td>
</tr>
<tr>
<td>6,4</td>
<td>760 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>0.21</td>
<td>0.0029</td>
<td>1250</td>
<td>1,6</td>
<td>144,2</td>
<td>108,000</td>
<td>110</td>
<td>99,5</td>
<td>32,5</td>
<td>31,95</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>1300 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>0.75</td>
<td>0.0073</td>
<td>2000</td>
<td>1.4</td>
<td>139,6</td>
<td>27,000</td>
<td>139</td>
<td>127,2</td>
<td>32,5</td>
<td>31,95</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>2000 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>1,3</td>
<td>0.0089</td>
<td>3150</td>
<td>1.5</td>
<td>144,2</td>
<td>23,000</td>
<td>144</td>
<td>134,3</td>
<td>32,5</td>
<td>31,95</td>
<td>C</td>
</tr>
<tr>
<td>28</td>
<td>3300 (N⋅m)</td>
<td>1.0</td>
<td>0.75</td>
<td>2,19</td>
<td>0.018</td>
<td>5000</td>
<td>6,6</td>
<td>170,2</td>
<td>21,000</td>
<td>170</td>
<td>154,1</td>
<td>34,5</td>
<td>31,95</td>
<td>C</td>
</tr>
</tbody>
</table>

Note: Bolt circle diameter (C) and bolt hole (M) dimensions are shown in above table.

1️⃣ According to DIN 740-2:1986-08
2️⃣ According to DIN 50100:1978-02
Double-flexing Coupling Element

Modulflex 9205-XX-0500

Double flexible element as basis for spacer and long spacer coupling configurations. For replace-in-place and adapting to existing connecting equipment. The element can be used with finished bore or Rexnord Koniclamp® hub configurations.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction

Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm

Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack

Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:

Elements: High-strength Aluminum 7075 to ensure low weight and inertia

Technical data almost identical to the steel version

Available coating: Hard coating to protect against corrosion and to harden the surface
9205-XX-0500 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330</td>
<td>330</td>
<td>500</td>
<td>500</td>
<td>660</td>
<td>20</td>
<td>0,38</td>
<td>0,37</td>
<td>0,75</td>
<td>0,055</td>
<td>0,0012</td>
</tr>
<tr>
<td>4,5</td>
<td>540</td>
<td>540</td>
<td>800</td>
<td>800</td>
<td>1 080</td>
<td>2,4</td>
<td>0,42</td>
<td>0,75</td>
<td>0,080</td>
<td>0,0026</td>
<td>2,0</td>
</tr>
<tr>
<td>6,4</td>
<td>760</td>
<td>760</td>
<td>1 250</td>
<td>1 250</td>
<td>1 520</td>
<td>2,6</td>
<td>0,41</td>
<td>0,75</td>
<td>0,205</td>
<td>0,0058</td>
<td>3,2</td>
</tr>
<tr>
<td>11</td>
<td>1 300</td>
<td>1 300</td>
<td>2 000</td>
<td>2 000</td>
<td>2 600</td>
<td>2,8</td>
<td>0,42</td>
<td>0,75</td>
<td>0,375</td>
<td>0,0146</td>
<td>5,0</td>
</tr>
<tr>
<td>17</td>
<td>2 000</td>
<td>2 000</td>
<td>3 150</td>
<td>3 150</td>
<td>4 000</td>
<td>3,0</td>
<td>0,42</td>
<td>0,75</td>
<td>0,650</td>
<td>0,0178</td>
<td>5,2</td>
</tr>
<tr>
<td>28</td>
<td>3 300</td>
<td>3 300</td>
<td>5 000</td>
<td>5 000</td>
<td>6 600</td>
<td>3,2</td>
<td>0,45</td>
<td>0,75</td>
<td>1,10</td>
<td>0,036</td>
<td>7,8</td>
</tr>
<tr>
<td>45</td>
<td>5 400</td>
<td>5 400</td>
<td>8 000</td>
<td>8 000</td>
<td>10 800</td>
<td>4,0</td>
<td>0,58</td>
<td>0,75</td>
<td>1,77</td>
<td>0,088</td>
<td>14,0</td>
</tr>
<tr>
<td>64</td>
<td>7 600</td>
<td>7 600</td>
<td>12 500</td>
<td>12 500</td>
<td>15 200</td>
<td>4,2</td>
<td>0,65</td>
<td>0,75</td>
<td>2,32</td>
<td>0,152</td>
<td>19,8</td>
</tr>
<tr>
<td>110</td>
<td>13 200</td>
<td>13 200</td>
<td>20 000</td>
<td>20 000</td>
<td>26 400</td>
<td>5,0</td>
<td>0,76</td>
<td>0,75</td>
<td>3,26</td>
<td>0,276</td>
<td>26,2</td>
</tr>
<tr>
<td>170</td>
<td>20 400</td>
<td>20 400</td>
<td>31 500</td>
<td>31 500</td>
<td>40 800</td>
<td>5,8</td>
<td>0,86</td>
<td>0,75</td>
<td>5,96</td>
<td>0,55</td>
<td>42</td>
</tr>
<tr>
<td>280</td>
<td>33 600</td>
<td>33 600</td>
<td>50 000</td>
<td>50 000</td>
<td>67 200</td>
<td>6,4</td>
<td>1,00</td>
<td>0,75</td>
<td>8,59</td>
<td>1,11</td>
<td>66</td>
</tr>
<tr>
<td>450</td>
<td>54 000</td>
<td>54 000</td>
<td>80 000</td>
<td>80 000</td>
<td>108 000</td>
<td>7,2</td>
<td>1,18</td>
<td>0,75</td>
<td>14,55</td>
<td>2,08</td>
<td>96</td>
</tr>
<tr>
<td>640</td>
<td>76 800</td>
<td>76 800</td>
<td>125 000</td>
<td>125 000</td>
<td>153 600</td>
<td>8,2</td>
<td>1,33</td>
<td>0,75</td>
<td>19,74</td>
<td>3,66</td>
<td>136</td>
</tr>
<tr>
<td>1 100</td>
<td>132 000</td>
<td>132 000</td>
<td>193 000</td>
<td>193 000</td>
<td>264 000</td>
<td>9,2</td>
<td>1,65</td>
<td>0,75</td>
<td>29,62</td>
<td>7,66</td>
<td>220</td>
</tr>
<tr>
<td>1 700</td>
<td>204 000</td>
<td>204 000</td>
<td>300 000</td>
<td>300 000</td>
<td>408 000</td>
<td>9,6</td>
<td>2,00</td>
<td>0,75</td>
<td>37,31</td>
<td>12,96</td>
<td>314</td>
</tr>
<tr>
<td>2 800</td>
<td>336 000</td>
<td>336 000</td>
<td>500 000</td>
<td>500 000</td>
<td>672 000</td>
<td>10,0</td>
<td>2,42</td>
<td>0,75</td>
<td>60,96</td>
<td>23,73</td>
<td>452</td>
</tr>
</tbody>
</table>

Note: Bolt circle diameter (C) and bolt hole (M) dimensions are shown in above table.
Double-flexing Coupling Element with Shaft Hub

Modulflex 9215-XX-3500

Double flexible element with finished bored standard hubs. Applications include any situation where the overall shaft-to-shaft spacing is minimal. The center member consists of two flexible elements and permits maintenance of the couplings without moving the hubs or the connected equipment. Center member is piloted into the adapter providing high-speed potential at high-torque density.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction
Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Hubs: Carbon steel
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface
Modulflex 9215-XX-3500

9215-XX-3500 DIMENSIONS

| Coupling Size | Nominal Torque ➊ | Nominal Torque ❼ | Maximum Torque ➋ | Maximum Torque ⫘ | Permissible Oscill. Bandwidth ➌ | Axial Misalignment ➍ | Radial Misalignment ➎ | Angular Misalignment ➌ | Moment of Inertia ❼ | Weight ❼ | Maximum Speed ❼ | Dimensions ❼ |
|---------------|------------------|------------------|------------------|------------------|-------------------------------|------------------|------------------|------------------|----------------|--------------|----------------|
| 2,8 | 330 - 330 | 500 - 500 | 660 | 2,0 | 0,38 | 0,75 | 0,05 | 0,002 | 2,3 | 44 000 | 35 48 79 59 45 |
| 4,5 | 540 - 540 | 800 - 800 | 1 080 | 2,4 | 0,42 | 0,75 | 0,075 | 0,004 | 3,4 | 39 000 | 44 60 92 65 50 |
| 6,4 | 760 - 760 | 1 250 - 1 250 | 1 520 | 2,6 | 0,41 | 0,75 | 0,189 | 0,010 | 5,7 | 31 400 | 55 75 114 62 55 |
| 11 | 1 300 - 1 300 | 2 000 - 2 000 | 2 600 | 2,8 | 0,42 | 0,75 | 0,354 | 0,027 | 10,5 | 27 100 | 70 100 143 64 70 |
| 17 | 2 000 - 2 000 | 3 150 - 3 150 | 4 000 | 3,0 | 0,42 | 0,75 | 0,603 | 0,034 | 11,3 | 23 200 | 8 110 150 65 75 |
| 28 | 3 300 - 3 300 | 5 000 - 5 000 | 6 600 | 3,2 | 0,45 | 0,75 | 0,986 | 0,064 | 16,0 | 21 000 | 90 120 174 69 85 |
| 45 | 5 400 - 5 400 | 8 000 - 8 000 | 10 800 | 4,0 | 0,58 | 0,75 | 1,602 | 0,165 | 30,3 | 18 400 | 105 145 205 88 110 |
| 64 | 7 600 - 7 600 | 12 500 - 12 500 | 15 200 | 4,2 | 0,65 | 0,75 | 2,111 | 0,281 | 41,3 | 15 600 | 120 162 227 100 120 |
| 110 | 13 200 - 13 200 | 20 000 - 20 000 | 26 400 | 5,0 | 0,76 | 0,75 | 3,009 | 0,537 | 63,1 | 14 500 | 135 188 252 116 140 |
| 170 | 20 400 - 20 400 | 31 500 - 31 500 | 40 800 | 5,8 | 0,86 | 0,75 | 5,299 | 0,990 | 86 | 12 800 | 160 210 293 131 160 |
| 280 | 33 600 - 33 600 | 50 000 - 50 000 | 67 200 | 6,4 | 1,00 | 0,75 | 7,875 | 2,13 | 143 | 11 300 | 180 250 334 153 180 |
| 450 | 54 000 - 54 000 | 80 000 - 80 000 | 108 000 | 7,2 | 1,18 | 0,75 | 12,79 | 3,65 | 193 | 10 100 | 200 268 375 180 200 |
| 640 | 76 800 - 76 800 | 125 000 - 125 000| 153 600 | 8,2 | 1,33 | 0,75 | 17,32 | 6,48 | 288 | 8 100 | 240 308 416 203 240 |
| 1100 | 132 000 - 132 000| 193 000 - 193 000| 264 000 | 9,2 | 1,65 | 0,75 | 26,43 | 13,6 | 434 | 7 700 | 270 358 475 252 270 |
| 1700 | 204 000 - 204 000| 300 000 - 300 000| 408 000 | 9,6 | 2,00 | 0,75 | 33,44 | 22,6 | 593 | 6 900 | 300 395 516 306 300 |
| 2800 | 336 000 - 336 000| 500 000 - 500 000| 672 000 | 10,0 | 2,42 | 0,75 | 49,62 | 35,0 | 5 500 | 350 420 602 370 360 |

➊ According to DIN 740-2:1986-08 ❼ According to DIN 50100:1978-02 ➋ Referring to one flexible module ➌ Based on 1/3 shaft penetration ➍ These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Double-flexing Coupling Element with Koniclamp®

Modulflex 9215-XX-4500

Double flexible element with Koniclamp® Clamping Hubs. Applications include any situation where the overall shaft-to-shaft spacing is minimal. The center member consists of two flexible elements and permits maintenance of the couplings without moving the hubs or the connected equipment. Center member is piloted into the adapter providing high-speed potential at high-torque density.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Koniclamp hubs are the recommended shaft-hub connection to ensure a backlash-free and true-running connection.

Construction
Elements and outer ring clamping hub: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Hubs: Carbon steel
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements and Koniclamp: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface

More information on the Koniclamp hub is available on page 7
9215-XX-4500 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque (+) T_{Kp} [N·m]</th>
<th>Nominal Torque (-) T_{Km} [N·m]</th>
<th>Maximum Torque (+) T_{Kp} [N·m]</th>
<th>Maximum Torque (-) T_{Km} [N·m]</th>
<th>Perp. Oscill. Bandwidth</th>
<th>Angular Misalignment</th>
<th>Radial Misalignment</th>
<th>Torsional Spring Rate</th>
<th>Moment of Inertia</th>
<th>Weight</th>
<th>Maximum Speed</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330 - 330 500 - 500 660 1,0</td>
<td>0,38 0,75</td>
<td>0,045 0,003 4,0 -44 000</td>
<td>20-30 67 79 32 59 39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5</td>
<td>540 - 540 800 - 800 1 080 1,2</td>
<td>0,42 0,75</td>
<td>0,070 0,005 4,6 -39 000</td>
<td>30-40 81 36 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,4</td>
<td>760 - 760 1 250 -1 250 1 520 1,3</td>
<td>0,41 0,75</td>
<td>0,076 0,006 5,0 -36 42</td>
<td>40-50 95 36 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 300 -1 300 2 000 -2 000 2 600 1,4</td>
<td>0,42 0,75</td>
<td>0,097 0,014 8,4 -31 400</td>
<td>20-30 88 50 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2 000 -2 000 3 150 -3 150 4 000 1,5</td>
<td>0,42 0,75</td>
<td>0,138 0,024 11 -30 000</td>
<td>30-40 110 54 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3 300 -3 300 5 000 -5 000 6 600 1,6</td>
<td>0,45 0,75</td>
<td>0,180 0,013 7,6 -28 000</td>
<td>50-60 95 45 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5 400 -5 400 8 000 -8 000 10 800 2,0</td>
<td>0,58 0,75</td>
<td>0,193 0,016 8,6 -27 100</td>
<td>50-60 110 40 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>7 600 -7 600 12 500 -12 500 15 200 2,1</td>
<td>0,65 0,75</td>
<td>0,199 0,034 13,8 -23 200</td>
<td>50-60 146 65 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>13 200 -13 200 20 000 -20 000 26 400 2,5</td>
<td>0,76 0,75</td>
<td>0,283 0,051 18,2 -21 000</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>20 400 -20 400 31 500 -31 500 40 800 2,9</td>
<td>0,86 0,75</td>
<td>0,335 0,031 11,8 -18 400</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>33 600 -33 600 50 000 -50 000 67 200 3,2</td>
<td>1,00 0,75</td>
<td>0,429 0,051 19,2 -15 600</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>54 000 -54 000 80 000 -80 000 108 000 3,6</td>
<td>1,18 0,75</td>
<td>0,499 0,066 20,4 -14 500</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>76 800 -76 800 125 000 -125 000 153 600 4,1</td>
<td>1,33 0,75</td>
<td>0,582 0,029 49,6 -12 200</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>132 000 -132 000 193 000 -193 000 264 000 4,6</td>
<td>1,65 0,75</td>
<td>0,657 0,041 59,7 -10 700</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>204 000 -204 000 300 000 -300 000 408 000 4,8</td>
<td>2,00 0,75</td>
<td>0,732 0,051 79,6 -9 200</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>336 000 -336 000 500 000 -500 000 672 000 5,0</td>
<td>2,42 0,75</td>
<td>0,808 0,051 99,6 -8 200</td>
<td>50-60 146 50 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1\: According to DIN 740-2:1986-08 2\: According to DIN 50100:1978-02 3\: Referring to one flexible module 4\: Based on 1/3 shaft penetration 5\: These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Short Spacer Coupling with Shaft Hub

Modulflex 9235-XX-3000

Spacer coupling design with finish bored hubs and industry standard spacer lengths to meet ISO and ANSI requirements and non standard spacer lengths of up to 500 mm. This optimized 5-piece design allows for the smallest possible package for an application. The hubs are pilot fitted to the factory assembled disc pack element. The design allows for repeatable installations without special tooling. Additional modifications may be made to reduce coupling weight, or special mountings to make it an economical option on various critical and high speed applications. Common engineered solutions are available such as torque overload protection, electrical insulation, spark resistance and alloy construction.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Torsionally tuned center member
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration thus not requiring an additional safety factor for the coupling
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction
- Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
- Hubs and spacer: Carbon steel
- Bolts: Alloy steel
- Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
- Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
- Elements and spacer: High-strength Aluminum 7075 to ensure low weight and inertia
- Technical data almost identical to the steel version
- Available coating: Hard coating to protect against corrosion and to harden the surface
9235-XX-3000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque ➀</th>
<th>Nominal Torque ➀</th>
<th>Maximum Torque ➀</th>
<th>Perm. Oscill. Bandwidth ➀</th>
<th>Axial Misalign. ➀</th>
<th>Radial Misalign. ➀</th>
<th>Angular Misalign. ➀</th>
<th>Tilting Spring Rate ➀</th>
<th>Moment of Inertia ➀</th>
<th>Weight ➀</th>
<th>Dimensions</th>
<th>Distance Between Shaft Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TKN</td>
<td>(+) TK</td>
<td>(+) TK max</td>
<td>(-) TK max</td>
<td>TKW</td>
<td>ΔK</td>
<td>ΔK</td>
<td>ΔK</td>
<td>C_spr [MN·m/rad]</td>
<td>m</td>
<td>m</td>
<td>S2</td>
</tr>
<tr>
<td>2.8</td>
<td>330</td>
<td>-330</td>
<td>500</td>
<td>-500</td>
<td>660</td>
<td>2.0</td>
<td>0.9</td>
<td>0.75</td>
<td>0.041</td>
<td>0.002</td>
<td>2.7</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>540</td>
<td>-540</td>
<td>800</td>
<td>-800</td>
<td>1 080</td>
<td>2.4</td>
<td>1.0</td>
<td>0.75</td>
<td>0.064</td>
<td>0.004</td>
<td>4.0</td>
<td>44</td>
</tr>
<tr>
<td>6.4</td>
<td>760</td>
<td>-760</td>
<td>1 250</td>
<td>-1 250</td>
<td>1 520</td>
<td>2.6</td>
<td>1.2</td>
<td>0.75</td>
<td>0.148</td>
<td>0.012</td>
<td>6.8</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>1 300</td>
<td>-1 300</td>
<td>2 000</td>
<td>-2 000</td>
<td>2 600</td>
<td>2.8</td>
<td>1.2</td>
<td>0.75</td>
<td>0.293</td>
<td>0.033</td>
<td>12.4</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>2 000</td>
<td>-2 000</td>
<td>3 150</td>
<td>-3 150</td>
<td>4 000</td>
<td>3.0</td>
<td>1.2</td>
<td>0.75</td>
<td>0.522</td>
<td>0.041</td>
<td>13.2</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>3 300</td>
<td>-3 300</td>
<td>5 000</td>
<td>-5 000</td>
<td>6 600</td>
<td>3.2</td>
<td>1.5</td>
<td>0.75</td>
<td>0.824</td>
<td>0.076</td>
<td>18.9</td>
<td>90</td>
</tr>
<tr>
<td>45</td>
<td>5 400</td>
<td>-5 400</td>
<td>8 000</td>
<td>-8 000</td>
<td>10 800</td>
<td>4.0</td>
<td>1.6</td>
<td>0.75</td>
<td>1.251</td>
<td>0.196</td>
<td>35.8</td>
<td>105</td>
</tr>
<tr>
<td>64</td>
<td>7 600</td>
<td>-7 600</td>
<td>12 500</td>
<td>-12 500</td>
<td>15 200</td>
<td>4.2</td>
<td>2.7</td>
<td>0.75</td>
<td>1.484</td>
<td>0.339</td>
<td>49.0</td>
<td>120</td>
</tr>
<tr>
<td>110</td>
<td>13 200</td>
<td>-13 200</td>
<td>20 000</td>
<td>-20 000</td>
<td>26 400</td>
<td>5.0</td>
<td>2.8</td>
<td>0.75</td>
<td>2.222</td>
<td>0.637</td>
<td>74.0</td>
<td>135</td>
</tr>
<tr>
<td>170</td>
<td>20 400</td>
<td>-20 400</td>
<td>31 500</td>
<td>-31 500</td>
<td>40 800</td>
<td>5.8</td>
<td>3.4</td>
<td>0.75</td>
<td>3.637</td>
<td>1.200</td>
<td>104</td>
<td>160</td>
</tr>
<tr>
<td>280</td>
<td>33 600</td>
<td>-33 600</td>
<td>50 000</td>
<td>-50 000</td>
<td>67 200</td>
<td>6.4</td>
<td>3.7</td>
<td>0.75</td>
<td>5.469</td>
<td>2.51</td>
<td>168</td>
<td>180</td>
</tr>
<tr>
<td>450</td>
<td>54 000</td>
<td>-54 000</td>
<td>80 000</td>
<td>-80 000</td>
<td>108 000</td>
<td>7.2</td>
<td>4.2</td>
<td>0.75</td>
<td>8.53</td>
<td>4.41</td>
<td>235</td>
<td>200</td>
</tr>
<tr>
<td>640</td>
<td>76 800</td>
<td>-76 800</td>
<td>125 000</td>
<td>-125 000</td>
<td>153 600</td>
<td>8.2</td>
<td>4.5</td>
<td>0.75</td>
<td>12.53</td>
<td>7.64</td>
<td>319</td>
<td>240</td>
</tr>
<tr>
<td>1100</td>
<td>132 000</td>
<td>-132 000</td>
<td>193 000</td>
<td>-193 000</td>
<td>264 000</td>
<td>9.3</td>
<td>5.0</td>
<td>0.75</td>
<td>20.1</td>
<td>15.9</td>
<td>512</td>
<td>270</td>
</tr>
<tr>
<td>1700</td>
<td>204 000</td>
<td>-204 000</td>
<td>300 000</td>
<td>-300 000</td>
<td>408 000</td>
<td>9.6</td>
<td>5.4</td>
<td>0.75</td>
<td>27.1</td>
<td>26.3</td>
<td>702</td>
<td>300</td>
</tr>
<tr>
<td>2800</td>
<td>336 000</td>
<td>-336 000</td>
<td>500 000</td>
<td>-500 000</td>
<td>672 000</td>
<td>10.0</td>
<td>8.1</td>
<td>0.75</td>
<td>35.0</td>
<td>602</td>
<td>360</td>
<td>350</td>
</tr>
</tbody>
</table>

- ➀ According to DIN 740-2:1986-08
- ❼ According to DIN 50100:1978-02
- ➁ Referring to min. spacer length design
- ❼ Referring to one flexible module
- ➂ Based on 1/3 shaft penetration
- ❼ These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Spacer coupling design with Rexnord Koniclamp clamping hubs and industry standard spacer lengths to meet ISO and ANSI requirements and non standard spacer lengths of up to 500 mm. This optimized 5-piece design allows for the smallest possible package for an application. The hubs are pilot fitted to the factory assembled disc pack element. The design allows for repeatable installations without special tooling. Additional modifications may be made to reduce coupling weight, or special mountings to make it an economical option on various critical and high speed applications. Common engineered solutions are available such as torque overload protection, electrical insulation, spark resistance and alloy construction.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Torsionally tuned center member
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Koniclamp hubs are the recommended shaft-hub connection to ensure a backlash-free and true-running connection.

Construction
Elements and outer ring clamping hub: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Hubs and spacer: Carbon steel
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements, Koniclamp and spacer: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface

More information on the Koniclamp hub is available on page 7
9235-XX-4000 Dimensions

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque (Nm)</th>
<th>Nominal Torque (lbf.in)</th>
<th>Maximum Torque (Nm)</th>
<th>Maximum Torque (lbf.in)</th>
<th>Perm. Qd.</th>
<th>Oscill. Perm.</th>
<th>Misalign. Axial</th>
<th>Misalign. Angular</th>
<th>Torional Spring Rate</th>
<th>Moment of Inertia (kg-mm²)</th>
<th>Weight (kg)</th>
<th>Dimensions</th>
<th>Distance Between Shaft Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330</td>
<td>-330</td>
<td>500</td>
<td>-500</td>
<td>660</td>
<td>10</td>
<td>9</td>
<td>0.75</td>
<td>0.038, 0.003, 4.4</td>
<td>20-30, 67</td>
<td>32, 69</td>
<td>39</td>
<td>101, X</td>
</tr>
<tr>
<td>4,5</td>
<td>540</td>
<td>-540</td>
<td>800</td>
<td>-800</td>
<td>1080</td>
<td>1.2</td>
<td>1</td>
<td>0.75</td>
<td>0.061, 0.006, 5.1</td>
<td>30-40, 81</td>
<td>36, 64</td>
<td>42</td>
<td>107, X</td>
</tr>
<tr>
<td>6,4</td>
<td>760</td>
<td>-760</td>
<td>1250</td>
<td>-1250</td>
<td>1520</td>
<td>1.3</td>
<td>1.2</td>
<td>0.75</td>
<td>0.085, 0.016, 9.7</td>
<td>20-30, 88</td>
<td>40, 42</td>
<td>X</td>
<td>125, X</td>
</tr>
<tr>
<td>11</td>
<td>1300</td>
<td>-1300</td>
<td>2000</td>
<td>-2000</td>
<td>2600</td>
<td>1.4</td>
<td>1.2</td>
<td>0.75</td>
<td>0.115, 0.026, 12.3</td>
<td>30-40, 110</td>
<td>54, 64</td>
<td>64</td>
<td>143, X</td>
</tr>
<tr>
<td>17</td>
<td>2000</td>
<td>-2000</td>
<td>3150</td>
<td>-3150</td>
<td>4000</td>
<td>1.5</td>
<td>1.2</td>
<td>0.75</td>
<td>0.142, 0.016, 8.9</td>
<td>40-40, 95</td>
<td>36, 45</td>
<td>X</td>
<td>126, X</td>
</tr>
<tr>
<td>28</td>
<td>3300</td>
<td>-3300</td>
<td>5000</td>
<td>-5000</td>
<td>6600</td>
<td>1.6</td>
<td>1.5</td>
<td>0.75</td>
<td>0.150, 0.018, 9.9</td>
<td>50-50, 110</td>
<td>40, 48</td>
<td>X</td>
<td>149, X</td>
</tr>
<tr>
<td>45</td>
<td>5400</td>
<td>-5400</td>
<td>8000</td>
<td>-8000</td>
<td>10800</td>
<td>2.0</td>
<td>1.6</td>
<td>0.75</td>
<td>1.085, 0.042, 16.5</td>
<td>40-40, 110</td>
<td>54, 64</td>
<td>X</td>
<td>170, X</td>
</tr>
<tr>
<td>64</td>
<td>7600</td>
<td>-7600</td>
<td>12500</td>
<td>-12500</td>
<td>15200</td>
<td>2.1</td>
<td>2.7</td>
<td>0.75</td>
<td>0.292, 0.044, 14.3</td>
<td>60-75, 136</td>
<td>43, 51</td>
<td>X</td>
<td>227, X</td>
</tr>
<tr>
<td>110</td>
<td>13200</td>
<td>-13200</td>
<td>20000</td>
<td>-20000</td>
<td>26400</td>
<td>2.5</td>
<td>2.8</td>
<td>0.75</td>
<td>0.370, 0.061, 20.9</td>
<td>40-40, 139</td>
<td>67, 65</td>
<td>X</td>
<td>253, X</td>
</tr>
<tr>
<td>170</td>
<td>20400</td>
<td>-20400</td>
<td>31500</td>
<td>-31500</td>
<td>40800</td>
<td>2.9</td>
<td>3.4</td>
<td>0.75</td>
<td>0.442, 0.072, 22.1</td>
<td>50-60, 146</td>
<td>80, 69</td>
<td>X</td>
<td>293, X</td>
</tr>
<tr>
<td>280</td>
<td>33600</td>
<td>-33600</td>
<td>50000</td>
<td>-50000</td>
<td>67200</td>
<td>3.2</td>
<td>3.7</td>
<td>0.75</td>
<td>0.515, 0.052, 15.7</td>
<td>60-75, 136</td>
<td>43, 56</td>
<td>X</td>
<td>324, X</td>
</tr>
<tr>
<td>450</td>
<td>54000</td>
<td>-54000</td>
<td>80000</td>
<td>-80000</td>
<td>108000</td>
<td>3.6</td>
<td>4.2</td>
<td>0.75</td>
<td>0.634, 0.108, 27.8</td>
<td>50-60, 146</td>
<td>80, 72</td>
<td>X</td>
<td>375, X</td>
</tr>
<tr>
<td>560</td>
<td>76800</td>
<td>-76800</td>
<td>125000</td>
<td>-125000</td>
<td>157600</td>
<td>4.1</td>
<td>4.5</td>
<td>0.75</td>
<td>0.749, 0.134, 31.4</td>
<td>60-75, 168</td>
<td>101, 77</td>
<td>X</td>
<td>414, X</td>
</tr>
<tr>
<td>640</td>
<td>96000</td>
<td>-96000</td>
<td>150000</td>
<td>-150000</td>
<td>200000</td>
<td>4.6</td>
<td>5</td>
<td>0.75</td>
<td>0.842, 0.164, 24.0</td>
<td>75-90, 155</td>
<td>50, 64</td>
<td>X</td>
<td>461, X</td>
</tr>
<tr>
<td>1100</td>
<td>132000</td>
<td>-132000</td>
<td>193000</td>
<td>-193000</td>
<td>264000</td>
<td>4.6</td>
<td>5</td>
<td>0.75</td>
<td>0.923, 0.205, 34.0</td>
<td>90-105, 177</td>
<td>55, 69</td>
<td>X</td>
<td>516, X</td>
</tr>
<tr>
<td>1700</td>
<td>204000</td>
<td>-204000</td>
<td>300000</td>
<td>-300000</td>
<td>408000</td>
<td>5.0</td>
<td>4.0</td>
<td>0.75</td>
<td>1.172, 0.251, 53.9</td>
<td>90-105, 177</td>
<td>101, 79</td>
<td>X</td>
<td>568, X</td>
</tr>
<tr>
<td>2800</td>
<td>336000</td>
<td>-336000</td>
<td>500000</td>
<td>-500000</td>
<td>672000</td>
<td>5.0</td>
<td>8.1</td>
<td>0.75</td>
<td>1.279, 0.237, 40.1</td>
<td>90-105, 177</td>
<td>55, 69</td>
<td>X</td>
<td>802, X</td>
</tr>
</tbody>
</table>

1. According to DIN 740-2:1986-08
2. According to DIN 20100:1978-02
3. Referring to min. spacer length design
4. Referring to one flexible module
5. Based on 1/3 shaft penetration
6. These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.

Refer to DIN 740-2:1986-08 for more detailed specifications.
Welded spacer coupling design with Rexnord Koniclamp clamping hubs and spacer lengths of up to 6 meters. Spacers with lengths above 6 meters and for high speed applications also available (carbon fibre version). Floating shaft couplings are used to connect units which are relatively far apart. Such arrangements are particularly suited to transmit power into areas where moisture, dust or corrosive conditions would adversely affect the driving machinery. The operating speeds of floating shaft couplings are dependent upon the length of span required and center tube material thickness. Consult Rexnord for center tube critical speed calculation and special balancing requirements.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Torsionally tuned center member
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction
Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Hubs: Carbon steel
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface
9255-XX-3000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque①</th>
<th>Nominal Torque①</th>
<th>Maximum Torque①</th>
<th>Maximum Torque①</th>
<th>Permissible Oscillation Bandwidth①</th>
<th>Axial Misalignment①</th>
<th>Radial Misalignment①</th>
<th>Angular Misalignment①</th>
<th>Torque Rate②⑤⑥</th>
<th>Moment of Inertia①</th>
<th>Weight①</th>
<th>Dimensions</th>
<th>Distance Between Shaft Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8</td>
<td>330</td>
<td>-330</td>
<td>500</td>
<td>-500</td>
<td>660</td>
<td>2,0</td>
<td>0,9</td>
<td>0,75</td>
<td>0,041</td>
<td>0,002</td>
<td>2,7</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>4,5</td>
<td>540</td>
<td>-540</td>
<td>800</td>
<td>-800</td>
<td>1 080</td>
<td>2,4</td>
<td>1,0</td>
<td>0,75</td>
<td>0,064</td>
<td>0,004</td>
<td>4,0</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>6,4</td>
<td>760</td>
<td>-760</td>
<td>1 250</td>
<td>-1 250</td>
<td>1 520</td>
<td>2,6</td>
<td>1,2</td>
<td>0,75</td>
<td>0,148</td>
<td>0,012</td>
<td>6,8</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>1 300</td>
<td>-1 300</td>
<td>2 000</td>
<td>-2 000</td>
<td>2 600</td>
<td>2,8</td>
<td>1,2</td>
<td>0,75</td>
<td>0,293</td>
<td>0,033</td>
<td>12,4</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>2 000</td>
<td>-2 000</td>
<td>3 150</td>
<td>-3 150</td>
<td>4 000</td>
<td>3,0</td>
<td>1,2</td>
<td>0,75</td>
<td>0,522</td>
<td>0,041</td>
<td>13,2</td>
<td>80</td>
<td>110</td>
</tr>
<tr>
<td>28</td>
<td>3 300</td>
<td>-3 300</td>
<td>5 000</td>
<td>-5 000</td>
<td>6 600</td>
<td>3,2</td>
<td>1,5</td>
<td>0,75</td>
<td>0,824</td>
<td>0,076</td>
<td>18,9</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>45</td>
<td>5 400</td>
<td>-5 400</td>
<td>8 000</td>
<td>-8 000</td>
<td>10 800</td>
<td>4,0</td>
<td>1,6</td>
<td>0,75</td>
<td>1,251</td>
<td>0,196</td>
<td>35,8</td>
<td>105</td>
<td>145</td>
</tr>
<tr>
<td>64</td>
<td>7 600</td>
<td>-7 600</td>
<td>12 500</td>
<td>-12 500</td>
<td>15 200</td>
<td>4,2</td>
<td>2,7</td>
<td>0,75</td>
<td>1,484</td>
<td>0,339</td>
<td>49,0</td>
<td>120</td>
<td>162</td>
</tr>
<tr>
<td>110</td>
<td>13 200</td>
<td>-13 200</td>
<td>20 000</td>
<td>-20 000</td>
<td>25 200</td>
<td>5,0</td>
<td>2,8</td>
<td>0,75</td>
<td>2,222</td>
<td>0,637</td>
<td>74,0</td>
<td>135</td>
<td>188</td>
</tr>
<tr>
<td>170</td>
<td>20 400</td>
<td>-20 400</td>
<td>31 500</td>
<td>-31 500</td>
<td>40 800</td>
<td>5,8</td>
<td>3,4</td>
<td>0,75</td>
<td>3,637</td>
<td>1,200</td>
<td>104</td>
<td>160</td>
<td>210</td>
</tr>
<tr>
<td>280</td>
<td>33 600</td>
<td>-33 600</td>
<td>50 000</td>
<td>-50 000</td>
<td>67 200</td>
<td>6,4</td>
<td>3,7</td>
<td>0,75</td>
<td>5,469</td>
<td>2,51</td>
<td>168</td>
<td>180</td>
<td>250</td>
</tr>
<tr>
<td>450</td>
<td>54 000</td>
<td>-54 000</td>
<td>80 000</td>
<td>-80 000</td>
<td>108 000</td>
<td>7,2</td>
<td>4,2</td>
<td>0,75</td>
<td>8,53</td>
<td>4,41</td>
<td>235</td>
<td>200</td>
<td>268</td>
</tr>
<tr>
<td>640</td>
<td>76 800</td>
<td>-76 800</td>
<td>125 000</td>
<td>-125 000</td>
<td>153 600</td>
<td>8,2</td>
<td>4,5</td>
<td>0,75</td>
<td>12,53</td>
<td>7,64</td>
<td>319</td>
<td>240</td>
<td>308</td>
</tr>
<tr>
<td>1100</td>
<td>132 000</td>
<td>-132 000</td>
<td>193 000</td>
<td>-193 000</td>
<td>264 000</td>
<td>9,2</td>
<td>5,0</td>
<td>0,75</td>
<td>20,1</td>
<td>15,9</td>
<td>512</td>
<td>270</td>
<td>358</td>
</tr>
<tr>
<td>1700</td>
<td>204 000</td>
<td>-204 000</td>
<td>300 000</td>
<td>-300 000</td>
<td>408 000</td>
<td>9,6</td>
<td>5,4</td>
<td>0,75</td>
<td>27,1</td>
<td>26,3</td>
<td>702</td>
<td>300</td>
<td>395</td>
</tr>
<tr>
<td>2800</td>
<td>336 000</td>
<td>-336 000</td>
<td>500 000</td>
<td>-500 000</td>
<td>672 000</td>
<td>10,0</td>
<td>8,1</td>
<td>0,75</td>
<td>350</td>
<td>420</td>
<td>602</td>
<td>350</td>
<td>420</td>
</tr>
</tbody>
</table>

① According to DIN 740-2:1986-08 ② According to DIN 50100:1978-02 ③ Referring to min. spacer length design ④ Referring to one flexible module ⑤ Based on 1/3 shaft penetration ⑥ These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Long Spacer Coupling with Koniclamp

Modulflex 9255-XX-4000

Welded spacer coupling design with Koniclamp hubs and spacer lengths of up to 6,000 mm. Spacers with lengths above 6,000 mm and for high speed applications also available (carbon fibre version). Floating shaft couplings are used to connect units which are relatively far apart. Such arrangements are particularly suited to transmit power into areas where moisture, dust or corrosive conditions would adversely affect the driving machinery. The operating speeds of floating shaft couplings are dependent upon the length of span required and center tube material thickness. Consult Rexnord for center tube critical speed calculation and special balancing requirements.

Features
• Disc packs are built under compression
• High precision accuracy on bolt and disc joint
• Large diameter disc connection bolts
• Torsionally tuned center member
• Disc designed for infinite dynamic load life

Benefits
• Zero backlash & joint vibration
• Requires no extra safety factor for the coupling
• High torque per outer diameter
• High potential speeds
• Minimizes bolt cycle fatigue
• Compensates for radial, angular and axial misalignment thus protecting the torque flange
• Rigid coupling to meet system torsional requirements
• Reliable performance even when the system experiences reciprocating forces
• No dynamic load life limit

Koniclamp hubs are the recommended shaft-hub connection to ensure a backlash-free and true-running connection.

Construction
Elements and outer ring clamping hub: Alloy steel with a typical tensile strength of 900 - 1200 N/mm
Hubs: Carbon steel
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:
Elements and Koniclamp: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface
9255-XX-4000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque (N·m)</th>
<th>Nominal Torque (N·m)</th>
<th>Maximum Torque (N·m)</th>
<th>Perm. Oscill. Bandwidth (°)</th>
<th>Axial Misalignment (mm)</th>
<th>Radial Misalignment (mm)</th>
<th>Angular Misalignment (°)</th>
<th>Torque Spring Rate (kN/rad)</th>
<th>Moment of Inertia (kg·m²)</th>
<th>Weight (kg)</th>
<th>Dimensions (mm)</th>
<th>Distance Between Shaft Ends (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,8 330</td>
<td>-330 500</td>
<td>-500 660</td>
<td>1,0 0,9 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5 540</td>
<td>-540 800</td>
<td>-800 1080</td>
<td>1,2 1 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,4 760</td>
<td>-760 1250</td>
<td>-1250 1520</td>
<td>1,3 1,2 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 1300</td>
<td>-1300 2000</td>
<td>-2000 2600</td>
<td>1,4 1,2 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 2000</td>
<td>-2000 3150</td>
<td>-3150 4000</td>
<td>1,5 1,2 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 3300</td>
<td>-3300 5000</td>
<td>-5000 6600</td>
<td>1,6 1,5 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 5400</td>
<td>-5400 8000</td>
<td>-8000 10800</td>
<td>2,0 1,6 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 7600</td>
<td>-7600 12500</td>
<td>-12500 15200</td>
<td>2,1 2,7 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 13200</td>
<td>-13200 20000</td>
<td>-20000 26400</td>
<td>2,5 2,8 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 20400</td>
<td>-20400 31500</td>
<td>-31500 40800</td>
<td>2,9 3,4 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 33600</td>
<td>-33600 50000</td>
<td>-50000 67200</td>
<td>3,2 3,70 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450 54000</td>
<td>-54000 80000</td>
<td>-80000 108000</td>
<td>3,6 4,2 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640 76800</td>
<td>-76800 125000</td>
<td>-125000 153600</td>
<td>4,1 4,5 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100 132000</td>
<td>-132000 193000</td>
<td>-193000 264000</td>
<td>4,6 5 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700 204000</td>
<td>-204000 300000</td>
<td>-300000 408000</td>
<td>4,8 5,40 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800 336000</td>
<td>-336000 500000</td>
<td>-500000 672000</td>
<td>5,0 8,1 0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) According to DIN 740-2:1986-08 2) According to DIN 50100:1978-02 3) Referring to min. spacer length design 4) Referring to one flexible module 5) Based on 1/3 shaft penetration 6) These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Spacer coupling design with flywheel adapter and finished bored hub. Modulflex 9275 couplings are used in heavy-duty, medium speed applications where high-starting torque, shock loads, torque reversals or continuous alternating torque are present. The open lug type center member provides ample clearance for assembly while minimizing the space required for coupling installation.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Construction

Elements: Alloy steel with a typical tensile strength of 900 - 1200 N/mm

Hubs and spacer < 500 mm: Carbon steel
Spacer > 500 mm: Carbon steel, carbon fibre
Bolts: Alloy steel
Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack
Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:

Elements and spacer < 500 mm: High-strength Aluminum 7075 to ensure low weight and inertia
Technical data almost identical to the steel version
Available coating: Hard coating to protect against corrosion and to harden the surface
9275-XX-3000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Nominal Torque ➀</th>
<th>Nominal Torque ➀</th>
<th>Maximum Torque ➀</th>
<th>Maximum Torque ➀</th>
<th>Perm. Oscill. Bandwidth ➁</th>
<th>Axial Misalign. ➂</th>
<th>Radial Misalign. ➂</th>
<th>Angular Misalign. ➃</th>
<th>Torsional Spring Rate ➄</th>
<th>Moment of Inertia ➅</th>
<th>Weight ➆</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) TK [N∙m]</td>
<td>(b) TK [N∙m]</td>
<td>(c) TK [N∙m]</td>
<td>(d) TK [N∙m]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,8</td>
<td>330</td>
<td>-330</td>
<td>500</td>
<td>-500</td>
<td>660</td>
<td>2.0</td>
<td>0.9</td>
<td>0.75</td>
<td>0.043</td>
<td>0.002</td>
<td>2.3</td>
</tr>
<tr>
<td>4,5</td>
<td>540</td>
<td>-540</td>
<td>800</td>
<td>-800</td>
<td>1080</td>
<td>2.4</td>
<td>1.0</td>
<td>0.75</td>
<td>0.066</td>
<td>0.004</td>
<td>3.3</td>
</tr>
<tr>
<td>6,4</td>
<td>760</td>
<td>-760</td>
<td>1 250</td>
<td>-1 250</td>
<td>1 520</td>
<td>2.6</td>
<td>1.2</td>
<td>0.75</td>
<td>0.152</td>
<td>0.010</td>
<td>5.6</td>
</tr>
<tr>
<td>11</td>
<td>1 300</td>
<td>-1 300</td>
<td>2 000</td>
<td>-2 000</td>
<td>2 600</td>
<td>2.8</td>
<td>1.2</td>
<td>0.75</td>
<td>0.3</td>
<td>0.027</td>
<td>9.7</td>
</tr>
<tr>
<td>17</td>
<td>2 000</td>
<td>-2 000</td>
<td>3 150</td>
<td>-3 150</td>
<td>4 000</td>
<td>3.0</td>
<td>1.2</td>
<td>0.75</td>
<td>0.539</td>
<td>0.033</td>
<td>10.2</td>
</tr>
<tr>
<td>28</td>
<td>3 300</td>
<td>-3 300</td>
<td>5 000</td>
<td>-5 000</td>
<td>6 600</td>
<td>3.2</td>
<td>1.3</td>
<td>0.75</td>
<td>0.859</td>
<td>0.062</td>
<td>14.8</td>
</tr>
<tr>
<td>45</td>
<td>5 400</td>
<td>-5 400</td>
<td>8 000</td>
<td>-8 000</td>
<td>10 800</td>
<td>4.0</td>
<td>1.6</td>
<td>0.75</td>
<td>1.297</td>
<td>0.158</td>
<td>27.7</td>
</tr>
<tr>
<td>64</td>
<td>7 600</td>
<td>-7 600</td>
<td>12 500</td>
<td>-12 500</td>
<td>15 200</td>
<td>4.2</td>
<td>2.7</td>
<td>0.75</td>
<td>1.532</td>
<td>0.275</td>
<td>38.3</td>
</tr>
<tr>
<td>110</td>
<td>13 200</td>
<td>-13 200</td>
<td>20 000</td>
<td>-20 000</td>
<td>26 400</td>
<td>5.0</td>
<td>2.8</td>
<td>0.75</td>
<td>2.287</td>
<td>0.507</td>
<td>56.5</td>
</tr>
<tr>
<td>170</td>
<td>20 400</td>
<td>-20 400</td>
<td>31 500</td>
<td>-31 500</td>
<td>40 800</td>
<td>5.8</td>
<td>3.4</td>
<td>0.75</td>
<td>3.78</td>
<td>0.980</td>
<td>82</td>
</tr>
<tr>
<td>280</td>
<td>33 600</td>
<td>-33 600</td>
<td>50 000</td>
<td>-50 000</td>
<td>67 200</td>
<td>6.4</td>
<td>3.7</td>
<td>0.75</td>
<td>5.632</td>
<td>2.001</td>
<td>130</td>
</tr>
<tr>
<td>450</td>
<td>54 000</td>
<td>-54 000</td>
<td>80 000</td>
<td>-80 000</td>
<td>108 000</td>
<td>7.2</td>
<td>4.2</td>
<td>0.75</td>
<td>8.887</td>
<td>3.625</td>
<td>187</td>
</tr>
<tr>
<td>640</td>
<td>76 800</td>
<td>-76 800</td>
<td>125 000</td>
<td>-125 000</td>
<td>153 600</td>
<td>8.2</td>
<td>4.5</td>
<td>0.75</td>
<td>13.11</td>
<td>6.23</td>
<td>243</td>
</tr>
<tr>
<td>1100</td>
<td>132 000</td>
<td>-132 000</td>
<td>193 000</td>
<td>-193 000</td>
<td>264 000</td>
<td>9.2</td>
<td>5.0</td>
<td>0.75</td>
<td>20.96</td>
<td>12.93</td>
<td>405</td>
</tr>
<tr>
<td>1700</td>
<td>204 000</td>
<td>-204 000</td>
<td>300 000</td>
<td>-300 000</td>
<td>408 000</td>
<td>9.6</td>
<td>5.4</td>
<td>0.75</td>
<td>28.29</td>
<td>21.48</td>
<td>565</td>
</tr>
<tr>
<td>2800</td>
<td>336 000</td>
<td>-336 000</td>
<td>500 000</td>
<td>-500 000</td>
<td>672 000</td>
<td>10.0</td>
<td>8.1</td>
<td>0.75</td>
<td>35.0</td>
<td>60.2</td>
<td>360</td>
</tr>
</tbody>
</table>

- ➀ According to DIN 740-2:1986-08
- ➁ According to DIN 50100:1978-02
- ➂ Referring to min. spacer length design
- ➃ Referring to one flexible module
- ➄ Based on 1/3 shaft penetration
- ➅ These values are valid for the shaft compression. In case of keyway connection, the values need to be recalculated.
Coupling with Adapter and Koniclamp

Modulflex 9275-XX-4000

Spacer coupling design with flywheel adapter and Koniclamp clamping hub. Modulflex 9275 couplings are used in heavy-duty, medium speed applications where high-starting torque, shock loads, torque reversals or continuous alternating torque are present. The open lug type center member provides ample clearance for assembly while minimizing the space required for coupling installation.

Features
- Disc packs are built under compression
- High precision accuracy on bolt and disc joint
- Large diameter disc connection bolts
- Disc designed for infinite dynamic load life

Benefits
- Zero backlash & joint vibration
- Requires no extra safety factor for the coupling
- High torque per outer diameter
- High potential speeds
- Minimizes bolt cycle fatigue
- Compensates for radial, angular and axial misalignment thus protecting the torque flange
- Rigid coupling to meet system torsional requirements
- Reliable performance even when the system experiences reciprocating forces
- No dynamic load life limit

Koniclamp hubs are the recommended shaft-hub connection to ensure a backlash-free and true-running connection.

Construction

Elements and outer ring clamping hub: Alloy steel with a typical tensile strength of 900 - 1200 N/mm

Hubs and spacer < 500 mm: Carbon steel

Spacer > 500 mm: Carbon steel, carbon fibre

Bolts: Alloy steel

Disc Packs: Stainless steel. Max. misalignment: 0,7° per disc pack

Coatings available: Nickel plating or phosphate. Other coatings available upon request

As alternative:

Elements, Koniclamp and spacer <500 mm: High-strength Aluminum 7075 to ensure low weight and inertia

Technical data almost identical to the steel version

Available coating: Hard coating to protect against corrosion and to harden the surface
9255-XX-4000 DIMENSIONS

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Nominal Torque 1</th>
<th>Nominal Torque 2</th>
<th>Maximum Torque 1</th>
<th>Maximum Torque 2</th>
<th>Perm. Orell Bandwidth 3</th>
<th>Axial Misalignment 1</th>
<th>Radial Misalignment 1</th>
<th>Angular Misalignment 1</th>
<th>Torional Spring Rate 1</th>
<th>Moment of Inertia 1</th>
<th>Weight 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_{nom} [Nm]</td>
<td>T_{nom} [Nm]</td>
<td>T_{max} [Nm]</td>
<td>T_{max} [Nm]</td>
<td>w_{per} [mm]</td>
<td>d_{ax} [mm]</td>
<td>r_{rad} [mm]</td>
<td>a_{ang} [mm]</td>
<td>C_{tor} [N m/rad]</td>
<td>I_{m} [kg m^2]</td>
<td>m [kg]</td>
</tr>
<tr>
<td>2,8</td>
<td>330 - 330</td>
<td>500 - 500</td>
<td>660</td>
<td>1,0</td>
<td>0,9</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,5</td>
<td>540 - 540</td>
<td>800 - 800</td>
<td>1,080</td>
<td>1,2</td>
<td>1</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,4</td>
<td>760 - 760</td>
<td>1,250 - 1,250</td>
<td>1,520</td>
<td>1,3</td>
<td>1</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,300 - 1,300</td>
<td>2,000 - 2,000</td>
<td>2,600</td>
<td>1,4</td>
<td>1,2</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2,000 - 2,000</td>
<td>3,150 - 3,150</td>
<td>4,000</td>
<td>1,5</td>
<td>1</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3,300 - 3,300</td>
<td>5,000 - 5,000</td>
<td>6,600</td>
<td>1,6</td>
<td>1</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5,400 - 5,400</td>
<td>8,000 - 8,000</td>
<td>10,800</td>
<td>2,0</td>
<td>1</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>7,600 - 7,600</td>
<td>12,500 - 12,500</td>
<td>15,200</td>
<td>2,1</td>
<td>2</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>13,200 - 13,200</td>
<td>20,000 - 20,000</td>
<td>26,400</td>
<td>2,5</td>
<td>2</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>20,400 - 20,400</td>
<td>31,500 - 31,500</td>
<td>40,800</td>
<td>2,9</td>
<td>3</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>33,600 - 33,600</td>
<td>50,000 - 50,000</td>
<td>67,200</td>
<td>3,2</td>
<td>3</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>54,000 - 54,000</td>
<td>80,000 - 80,000</td>
<td>108,000</td>
<td>3,6</td>
<td>4</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>76,800 - 76,800</td>
<td>125,000 - 125,000</td>
<td>153,600</td>
<td>4,1</td>
<td>4</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>132,000 - 132,000</td>
<td>193,000 - 193,000</td>
<td>264,000</td>
<td>4,6</td>
<td>5</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td>204,000 - 204,000</td>
<td>300,000 - 300,000</td>
<td>408,000</td>
<td>4,8</td>
<td>5</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>336,000 - 336,000</td>
<td>500,000 - 500,000</td>
<td>672,000</td>
<td>5,0</td>
<td>8</td>
<td>0,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 According to DIN 740-2:1986-08
2 According to DIN 50100:1978-02
3 Referring to min. spacer length design
4 Referring to one flexible module
Why Choose Rexnord?
When it comes to providing highly engineered products that improve productivity and efficiency for industrial applications worldwide, Rexnord is the most reliable in the industry. Commitment to customer satisfaction and superior value extend across every business function.

Delivering Lowest Total Cost of Ownership
The highest quality products are designed to help prevent equipment downtime and increase productivity and dependable operation.

Valuable Expertise
An extensive product offering is accompanied by global sales specialists, customer service and maintenance support teams, available anytime.

Solutions to Enhance Ease of Doing Business
Commitment to operational excellence ensures the right products at the right place at the right time.

Rexnord Company Overview
Rexnord is a growth-oriented, multi-platform industrial company with leading market shares and highly trusted brands that serve a diverse array of global end markets.

Process & Motion Control
The Rexnord Process & Motion Control platform designs, manufactures, markets and services specified, highly engineered mechanical components used within complex systems where our customers’ reliability requirements and the cost of failure or downtime are extremely high.

Water Management
The Rexnord Water Management platform designs, procures, manufactures and markets products that provide and enhance water quality, safety, flow control and conservation.