ATEX: In order for this coupling to meet the ATEX requirements, it is mandatory to precisely follow these installation instructions along with the included supplement form 0005-08-49-01. This supplement outlines the ATEX requirements. If the operator does not adhere to these instructions, conformity is immediately invalidated.

WARNING: Because of the possible danger to person(s) or property from accidents which may result from improper use or installations of products, it is extremely important to follow the proper selection, installation, maintenance and operational procedures.

All rotating power transmission products are potentially dangerous and can cause serious injury. They must be properly guarded in compliance with OSHA, ANSI and any other local standards for the speeds and applications in which they are used. It is the responsibility of the user to provide proper guarding.

For ATEX requirements the guard must have a minimum of ¼ inch (12.7 mm) radial clearance to the coupling major diameter “A” and allow for good ventilation.

1. **Purpose** — These instructions are intended to help you to install, align, and maintain your THOMAS high performance coupling. The series 63 is a precision-machined coupling designed for long life. It requires care during handling, installation, and alignment.

2. **Scope** — Covered here will be general information, hub mounting, alignment, assembly, locknut torque, and disc pack replacement. Refer to assembly drawing for part numbers.

3. **General Information** — Refer to the assembly drawing as well as these instructions. The coupling, as received, is assembled. Examine the parts to assure there is no visible damage. Remove the bolts and locknuts that attach the hubs to the unitized disc packs. Remove the hubs.

Figure 1

Figure 2
4. Hub Mounting

A. General — Clean hub bores and shafts. Remove any nicks or burrs. If bore is tapered, check for good contact pattern.

Taper Bore Bluing Check
1. Remove all burrs and nicks
2. Degrease all mating surfaces
3. Apply thin, translucent film of soft bluing to entire hub bore
4. Install hub onto shaft — seat hub. Do not rotate hub relative to shaft
5. Remove hub — observe transfer to shaft
6. Record transfer using scotch tape
7. Transfer should be uniform and complete

If the bore is straight, measure the bore and shaft diameters to assure proper fit. The key(s) should have a snug side-to-side fit with a small clearance over the top. Sharp corners should be removed from the sides of the key.

B. Standard Design
1. Straight Bore — Install key(s) in the shaft. Heat the hub in an oil bath or oven until bore is sufficiently larger than the shaft. 350°F is usually sufficient. An open flame is not recommended. However, if flame heating is necessary, use a very large rose bud tip to give even heat distribution. A thermal heat stick will help determine hub temperature. DO NOT SPOT HEAT THE HUB OR DISTORTION MAY OCCUR. With the hub expanded, slide it quickly up the shaft to the desired axial position. A pre-set axial stop device can be helpful. See Figure 4. Check the final results with depth micrometer. Install shaft locknut to hold hub in place.

2. Taper Bore with Key(s) — Put the hub on the shaft without key(s) in place. Lightly tap hub with a soft hammer. This will assure a metal-to-metal fit between shaft and hub. This is the starting point for the axial draw. Record this position, between shaft end and hub face, with a depth micrometer. See Figure 5. Mount a dial indicator to read axial movement of the hub. Set the indicator to “0”. Remove hub and install key(s). Remount hub, drawing it up the shaft to the desired position on the shaft. The hub may have to be heated in order to reach this position. DO NOT SPOT HEAT THE HUB OR DISTORTION MAY OCCUR. Use the indicator as a guide only. A pre-set axial stop device can be helpful. See Figure 4. Check the final results with depth micrometer. Install shaft locknut to hold hub in place.
3. **Taper Bore Keyless** — For keyless application, see “Keyless Hydraulic Hub Mounting and Dismounting” dated 5/97.

C. **Reduced Moment Design** — **NOTE:** On all reduced moment hub arrangements, the disc pack should be assembled onto the hub with the locknuts snugged up (not torqued) before final hub mounting on the shaft.

1. **Straight Bore (Reduced Moment)** — Proceed as per Item 4B.1 after disc pack is assembled to the hub per 6B.1 through 6B.4.

2. **Taper Bore (Reduced Moment)** — Proceed as per Item 4B.2 with the following additions. After the contact pattern is checked and the start point for hub draw is determined, assemble the disc pack to the hub per 6B.1 through 6B.4.

5. **Shaft Alignment** — Move equipment into place.

A. **Soft Foot** — The equipment must sit flat on its base. Any soft foot must be corrected now.

B. **Axial Spacing** — The axial spacing of the shafts should be positioned so that the disc packs (flexing elements) are flat when the equipment is running under normal operating conditions. This means there is a minimal amount of waviness in the disc pack when viewed from the side. This will result in a flexing element that is centered and parallel to its mating flange faces. Move the connected equipment or adjust the axial shims provided to accomplish the above. As a guide, maximum and minimum values for dimension “E” are given in Table 1. See Figure 1 and the assembly drawing for number of shims at each location. For a more exact number for “E”, see Figure 6.

Disc Pack “E” Measurement

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Washer Thickness</th>
<th>Normal Disc Pack Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>.076</td>
<td>.216</td>
</tr>
<tr>
<td>200</td>
<td>.094</td>
<td>.276</td>
</tr>
<tr>
<td>225</td>
<td>.094</td>
<td>.288</td>
</tr>
<tr>
<td>262</td>
<td>.094</td>
<td>.336</td>
</tr>
<tr>
<td>312</td>
<td>.125</td>
<td>.396</td>
</tr>
<tr>
<td>350</td>
<td>.156</td>
<td>.444</td>
</tr>
<tr>
<td>375</td>
<td>.156</td>
<td>.480</td>
</tr>
<tr>
<td>425</td>
<td>.188</td>
<td>.525</td>
</tr>
<tr>
<td>450</td>
<td>.188</td>
<td>.555</td>
</tr>
<tr>
<td>500</td>
<td>.188</td>
<td>.630</td>
</tr>
<tr>
<td>550</td>
<td>.233</td>
<td>.702</td>
</tr>
<tr>
<td>600</td>
<td>.344</td>
<td>.774</td>
</tr>
<tr>
<td>700</td>
<td>.281</td>
<td>.882</td>
</tr>
<tr>
<td>750</td>
<td>.312</td>
<td>.954</td>
</tr>
</tbody>
</table>

To calculate the “E” dimension of the actual coupling in question, measure the disc pack thickness “X” in four (4) places taking the average dimension, add to this the value for two (2) washer thicknesses. This will be the “E” dimension in the axially neutral disc pack position.

Figure 6

C. **Shaft Alignment** — The reverse indicator method is preferred.

1. Rigidly mount a dial indicator on one hub or shaft, reading the other hub or shaft outside diameter as shown in Figure 7. Compensate for indicator set-up sag. Rotate both shafts together. Adjust the equipment by shimming and/or moving so that the indicator reading is within .001 inch per inch of axial length between indicators.

2. Reverse the set-up as shown in Figure 7 and repeat #1 above.

3. When the results of #1 and #2 above are both within .001 inch per inch of axial length between indicators the shafts are in good alignment.

D. **Alignment Help** — For further help, refer to “Alignment Made Easy”, available from Rexnord.

Note: If the driver or driven equipment alignment specification is tighter than this recommendation, the specification should be used. Also, be sure to compensate for thermal movement in the equipment which is furnished by others. The coupling should be in alignment when the unit is running under normal operating conditions. The coupling is capable of approximately four (4) times the above shaft misalignment tolerances. However, close alignment at installation will provide longer
5. Final Assembly — The assembly drawing should be used in conjunction with these instructions. Special notes on the assembly drawing may supersede these instructions.

A. Standard Design — (See Figure 1 and/or assembly drawing.)

1. If there is a shaft end extending beyond a hub flange face due to a threaded extension, start the assembly at that end. If not, start at either end.

2. Insure that the pilots are clean and burr-free. Install all the bolts through hub flange bolt holes. (See Figure 8A.) Refer again to the assembly drawing for axial shim locations, if any, and install shims as necessary to obtain the proper axial spacing. (See Note 2, Page 5.)

3. Position unitized flex element over bolts with the match marks aligned. (See Note 1, Page 5, and place against shims and/or hub flange pilot.

 CAUTION: The bolt holes in the unitized flex element side plate must be in line with the hub flange bolt holes. The clearance holes in the side plate must be in line with the hub flange clearance holes. See Figure 8C.)

4. The unitized flex element side plates will have a light interference fit with its corresponding flange pilot. Seating force must be applied directly to the engaging side plate of the flex assembly. Apply this force to the side plate between bolt and clearance holes using a brass drift pin. (See Figure 8B.) With the side plate seated in the flange pilot, all the bolts must turn freely by hand. If the bolts do not turn freely, use jacking screws to release pilot fit, then repeat side plate fitting procedure.

5. Back the bolts out until they are flush with face of the installed flex assembly. Install the center member with match marks aligned. Using the bolts as guide pins, and while supporting the free end of the center member, seat the pilot using the method shown in Figure 8B. With the side plate seated in the flange pilot, all the bolts must turn freely by hand. If the bolts do not run freely, use jacking screws to release pilot fit, then repeat side plate fitting procedure. Install the locknuts. Tighten the locknuts only enough to maintain the assembly. Final torque will be applied after the total coupling is assembled.

6. The assembly just completed in Step 5 must be compressed axially to provide clearance for the second flex assembly installation. This can be accomplished by using “C” clamps. Apply two (2) clamps 190 degrees apart. Compress the joint only enough to provide minimum clearance for the installation of the second flex assembly. (See Figure 8D.)

7. Insert the remaining flex element between the hub and center member flange with the match marks aligned. Then install the bolts through the center member flange bolt holes and flex assembly. Also, install the bolts through the hub flange bolt holes and flex assembly in the same manner as Step 2 (See Note 1.) Release the clamp force at the opposite end and proceed to complete the installation of the second flex assembly similar to Steps 2 through 5. Make sure all bolts turn freely by hand before snugging up the locknuts.

8. At this point, make sure locknuts are not tight so that the disc packs are free to equalize any pre-stretch that was necessary when setting the axial spacing.

9. Torque all locknuts in accordance the Table 1.
insure a smooth, light push fit. Do not drive or force bolts through shims and flanges. Angular rotation or position of each shim is not critical.)

B. **Reduced Moment Design** — See figure 2 and/or Assembly Drawing.

Note: complete Steps 1 through 7 prior to mounting hubs on equipment shafts.

1. With the hub on a bench, insure that the pilots are clean and burr-free. Install all the bolts through hub bolt holes. (See Figure 9A.) Refer again to the assembly drawing for axial shim location, if any. Install shims as necessary to obtain the proper axial spacing. (See Note 2, above.)

2. Position unitized flex element over bolts with the match marks aligned. (See Note 2, above.)

 CAUTION: The bolt holes in the unitized flex assembly side plate must be in line with the hub flange bolt holes. The clearance holes in the side plate must be in line with the hub flange clearance holes.

3. The unitized flex assembly side plates will have a light interference fit with its corresponding flange pilot. Seating force must be applied directly to the engaging side plate of the flex assembly. Apply this force to the side plate between bolts and clearance holes using a brass drift pin. (See Figures 9B & 9C.) With the side plate seated in the flange pilot, all the bolts must turn freely by hand. If the bolts do not turn freely, use the jacking screws to release pilot fit, then repeat side plate fitting procedure.

4. Install only the locknuts that secure the flex assembly to the adapter. Do not torque these locknuts at this time.

5. Position the adapter over unitized flex element just installed on the hub with the match marks aligned. The side plate will have a light interference fit with the flange adapter pilot. Seating force must be applied directly to the engaging side plate of the flex assembly. Apply this force to the side plate between bolts and clearance holes using a brass drift pin. (See Figures 9B & 9C.) With the side plate seated in the flange pilot, all the bolts must turn freely by hand. If the bolts do turn freely, use the jacking screws to release pilot fit, then repeat side plate fitting procedure.

6. Recheck axial spacing per the assembly drawing.

7. Compress both driver and driven end flex elements using two (2) “C” clamps each end 180° apart, as shown in Figure 9D. Equally compress each end only the amount necessary to install center member.

8. If required, install shims (see assembly drawing). Install center member into place, with the match marks aligned (see Notes 1 and 2, Page 5). Carefully release “C” clamps from driver and driven end.

9. Insure that pilots are seated and install bolts and locknuts into center member joints. With the pilot seated, bolts should turn freely. Torque locknuts to the value shown in Table 1 for the center member.

10. At this point make sure locknuts are not tight so that the disc packs are free to equalize any pre-stretch that was necessary when setting the axial spacing.

11. Now torque the main locknuts to the value shown in Table 1.

12. After coupling has been completely assembled, a final visual check of the disc packs should be made. The disc packs will be parallel and flat in an aligned and properly assembled coupling.
6. Carefully release the “C” clamps aligning the pilot fit and the match marks between center member and adapter.

7. Insure pilot is seated and install bolts and locknuts into the center member adapter joint. With the pilot seated, bolts should turn freely. Torque the locknuts to the value shown in Table 1 for the center member.

8. Torque all disc pack locknuts to their respective value shown in Table 1.

9. After coupling has been completely assembled, a final visual check of the disc packs should be made. The disc packs will be parallel and flat in an aligned and properly assembled coupling.

7. Disassembly Procedure

A. Standard Design — See Figure 1 and coupling assembly drawing.

1. While supporting the center member, remove the bolts and locknuts from the flex joint that does no have the shaft protruding past the hub.

2. Using “C” clamps on the opposite end, compress flex joint enough to allow removal of flex element.

3. Using the jack screw tapped holes provided, evenly disengage the two(2) side plates from the hub and center member pilots. Be careful not to drop the disc pack as distortion can occur.

4. Slide the disc pact out.

5. Remove the “C” clamps.

6. While still supporting center member, remove the bolts and locknuts from remaining end of the coupling.

7. Using jack screws, disengage the piloted fit as in Step 3. Remove the center member and unitized flex element.

8. If necessary, remove the hubs. If hydraulically mounted, see “Keyless Hydraulic Hub Mounting and Dismounting” dated 5/97. When using heat, install a hub puller and put some pressure between shaft and hub. The heat should be applied to the hub rapidly, evenly, and in a large enough quantity to heat the hub before heating the shaft. When the hub starts to move axially, quickly apply more pressure to puller until the hub is off the shaft. Do not spot heat the hub or distortion may occur.

B. Reduced Moment Design — See Figure 2.

1. Remove bolts from the center member joints.

2. While supporting the center member, lightly compress the flex joints at each end with “C” clamps. Use jack screws to disengage the center spool joints. Remove center spool. Now remove the “C” clamps.

3. The hub, disc pack, and adapter should be removed as an assembly when using hydraulics (See Spec A-18823. When using...
heat, first remove the adapter from the unitized flex element. Install a hub puller and put some pressure between shaft and hub. The heat should be applied to the hub, rapidly, evenly, and in a large enough quantity to heat the hub before heating the shaft. When the hub starts to move axially, quickly apply more pressure to the puller until the hub is off the shaft. Do not spot heat the hub or distortion may occur.

4. On the bench, after hub has cooled, remove the remaining flex joint bolts and locknuts.

5. Using the jackscrew tapped holes, evenly disengage the side plate of the disc pack from the hub and pilot.

C. Semi-Reduced Moment Design — See Figure 3.

1. While supporting the center member remove bolts and locknuts from the center joint and flex joint on the “standard end” of the coupling.

2. Using “C” clamps on the reduced moment end of the coupling, compress flex element enough to allow removal of the center member.

3. Using the jackscrew tapped holes, evenly disengage the side plate from the center member flange pilot and the center member to short spool pilot. Remove center member and the unitized flex member from the standard hub end.

4. To remove the reduced moment end hub. Proceed as outlined in Section 7.B.3.

5. On the bench, remove all the flex joint bolts and locknuts.

6. Using the jack screw tapped holes, evenly disengage the side plate of the pack from the hub pilot.

7. To remove the standard hub, proceed as outlined in Section 7.A.B.

D. Replace parts as necessary — Recheck alignment per Section 5. Reassemble per Section 6.

Table 1 — Locknut Tightening Torques

<table>
<thead>
<tr>
<th>COUPLING SIZE</th>
<th>"A" Diameter</th>
<th>Estimated Dimension for "E"</th>
<th>Axial Capacity (Inch)</th>
<th>Disc Pack</th>
<th>Center Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>4.25</td>
<td>.37</td>
<td>±0.050</td>
<td>1/4-28 NF</td>
<td>9.5</td>
</tr>
<tr>
<td>200</td>
<td>5.47</td>
<td>.46</td>
<td>±0.070</td>
<td>3/8-24 NF</td>
<td>32</td>
</tr>
<tr>
<td>225</td>
<td>5.72</td>
<td>.48</td>
<td>±0.055</td>
<td>3/8-24 NF</td>
<td>32</td>
</tr>
<tr>
<td>262</td>
<td>6.72</td>
<td>.52</td>
<td>±0.060</td>
<td>7/16-2 NF</td>
<td>45</td>
</tr>
<tr>
<td>312</td>
<td>8.00</td>
<td>.65</td>
<td>±0.075</td>
<td>1/2-20 NF</td>
<td>70</td>
</tr>
<tr>
<td>350</td>
<td>8.91</td>
<td>.76</td>
<td>±0.080</td>
<td>5/8-18 NF</td>
<td>145</td>
</tr>
<tr>
<td>375</td>
<td>9.88</td>
<td>.79</td>
<td>±0.090</td>
<td>5/8-18 NF</td>
<td>145</td>
</tr>
<tr>
<td>425</td>
<td>10.69</td>
<td>.90</td>
<td>±0.100</td>
<td>3/4-16 NF</td>
<td>245</td>
</tr>
<tr>
<td>450</td>
<td>11.50</td>
<td>.93</td>
<td>±0.110</td>
<td>3/4-16 NF</td>
<td>245</td>
</tr>
<tr>
<td>500</td>
<td>13.12</td>
<td>1.01</td>
<td>±0.120</td>
<td>7/8-14 NF</td>
<td>385</td>
</tr>
<tr>
<td>550</td>
<td>14.75</td>
<td>1.17</td>
<td>±0.140</td>
<td>1-12 NF</td>
<td>565</td>
</tr>
<tr>
<td>600</td>
<td>16.38</td>
<td>1.46</td>
<td>±0.150</td>
<td>1-1/8-12 NF</td>
<td>800</td>
</tr>
<tr>
<td>700</td>
<td>18.69</td>
<td>1.44</td>
<td>±0.175</td>
<td>1-1/4 12 NF</td>
<td>1090</td>
</tr>
<tr>
<td>750</td>
<td>20.31</td>
<td>1.58</td>
<td>±0.190</td>
<td>1-3/8 12 NF</td>
<td>1455</td>
</tr>
</tbody>
</table>

NOTE: Bolts should be held from rotating while the locknuts are torqued to the values shown.