The Different Types of Gears

Article Tags:
bevel gears
double helical gears
gear drive
helical gears
herringbone gears
hypoid gears
spur gears
types of gears
worm gears

Functions of a Gear Drive:

A gear drive has three main functions: to increase torque from the driving equipment (motor) to the driven equipment, to reduce the speed generated by the motor, and/or to change the direction of the rotating shafts. The connection of this equipment to the gear box can be accomplished by the use of couplings, belts, chains, or through hollow shaft connections.

Speed and torque are inversely and proportionately related when power is held constant. Therefore, as speed decreases, torque increases at the same ratio.

The heart of a gear drive is obviously the gears within it. Gears operate in pairs, engaging one another to transmit power.

Spur Gear

Blog Content Image

Spur gears transmit power through shafts that are parallel. The teeth of the spur gears are parallel to the shaft axis. This causes the gears to produce radial reaction loads on the shaft, but not axial loads. Spur gears tend to be noisier than helical gears because they operate with a single line of contact between teeth.  While the teeth are rolling through mesh, they roll off of contact with one tooth and accelerate to contact with the next tooth.  This is different than helical gears, which have more than one tooth in contact and transmit torque more smoothly.

Helical Gear

Blog Content Image

Helical gears have teeth that are oriented at an angle to the shaft, unlike spur gears which are parallel. This causes more than one tooth to be in contact during operation and helical gears are capable of carrying more load than spur gears. Due to the load sharing between teeth, this arrangement also allows helical gears to operate smoother and quieter than spur gears. Helical gears produce a thrust load during operation which needs to be considered when they are used. Most enclosed gear drives use helical gears.

Double Helical Gear

Blog Content Image

Double helical gears are a variation of helical gears in which two helical faces are placed next to each other with a gap separating them.  Each face has identical, but opposite, helix angles. Employing a double helical set of gears eliminates thrust loads and offers the possibility of even greater tooth overlap and smoother operation. Like the helical gear, double helical gears are commonly used in enclosed gear drives.

Herringbone Gear

Blog Content Image

Herringbone gears are very similar to the double helical gear, but they do not have a gap separating the two helical faces. Herringbone gears are typically smaller than the comparable double helical, and are ideally suited for high shock and vibration applications. Herringbone gearing is not used very often due to their manufacturing difficulties and high cost.

Bevel Gear

Blog Content Image

Bevel gears are most commonly used to transmit power between shafts that intersect at a 90 degree angle. They are used in applications where a right angle gear drive is required. Bevel gears are generally more costly and are not able to transmit as much torque, per size, as a parallel shaft arrangement.

Worm Gear

Blog Content Image

Worm gears transmit power through right angles on non-intersecting shafts. Worm gears produce thrust load and are good for high shock load applications but offer very low efficiency in comparison to the other gears. Due to this low efficiency, they are often used in lower horsepower applications.

Hypoid Gear

Blog Content Image

Hypoid gears look very much like a spiral bevel gear but they operate on shafts which do not intersect, which is the case with a spiral bevel gear. In the hypoid arrangement because the pinion is set on a different plane than the gear, the shafts are supported by the bearings on either end of the shaft.
To learn more information visit Gear Products. For Technical questions and support, call 1-866-REXNORD to talk to one of our technical experts.

Imperatives to Specify Gear Drives Whitepaper

To learn more, download the whitepaper, Imperatives to Specify Gear Drives, written by Robin Olson, Director of Applications Engineers, M.S. Physics, AGMA Committee Chair, and Tuan Ton, Application Engineer, BSME Mechanical Engineering.


Robin Olson

Robin is the Director of Applications Engineering at Rexnord Industries, Gear Group. In 1995, Robin joined Falk, which was acquired by Rexnord in 2005, and has previously worked in the Engineering Technical Services, Warranty, Product Engineering, and Marine Product groups during her career.  She is active in the American Gear Manufacturers Association (AGMA), acting as a contributing member of the Helical Gear Rating Committee, Chairperson of the AGMA 925 (Gear Surface Distress) subcommittee, and is honored to act as US delegate to ISO Working Groups 6 (Gear calculations) and 15 (Micropitting).  Robin holds a Bachelor of Science in Physics from the University of Wisconsin -- LaCrosse and a Master of Science in Physics from the University of Wisconsin -- Madison.